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Efficient Transformers



Long long time go: RNNs Everywhere

But: how about speed? Gradients in long sequences?



The Transformer



Machine Translation Results: WMT-14

29.1 41.8



How about other NLP tasks?

BERT = Bidirectional Encoder Representations from Transformers

GLUE is a set of NLP tasks, we measure average score (higher is better)

● CBOW (bag of words) 58.6
● BiLSTM + Attention 65.6
● BiLSTM + ELMo + Attention 70.0
● BERT 80.5
● Human Baselines 87.1
● ALBERT 89.4



Transformer
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From the BERT documentation:

ZERO!



GPT3
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Outlook
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In the near future, it will be impossible to even fine-tune state of the art 
models without datacenter-scale hardware resources.



Outlook
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In the near future, it will be impossible to even fine-tune state of the art 
models without datacenter-scale hardware resources.

Transformers can be adapted to run on today’s hardware over entire chapters 
or documents of text -- up to 1 million tokens at a time.

Moreover, the model should run on a single GPU or TPU device.



Efficiency Challenges
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● Memory Efficiency
○ Reduce memory usage with reversible residual layers, as in 

RevNet [Gomez+ 17] 
○ Efficiently train with memory swapping to CPU and quantization

● Time Complexity
○ Introduce fast attention with locality sensitive hashing (LSH)

● Need to activate all weights for each token
○ Sparse layers that allow selective activations
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Memory
Efficiency



Memory Efficiency
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input

L = 1 million tokens



Memory Efficiency
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dmodel = 512

L = 1 million tokens

input



Memory Efficiency
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dmodel = 512

L = 1 million tokens

~ 2 GBinput



Memory Efficiency
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Memory Efficiency
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Memory Efficiency

P 17L = 1 million tokens

~ 2 GB

~ 2 GB

~ 2 GB

~ 2 GB

Attention

Feed Forward

Feed Forward...
input

output

12x Attention
12x Feed-Forward

50 GB total



Memory Efficiency: RevNets
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Memory Efficiency

P 19L = 1 million tokens

~ 4 GB

~ 4 GB

~ 4 GB

~ 4 GB

Attention

Feed Forward

Feed Forward...
input

output

No caching needed when 
using reversible layers



Reversible Transformer: BLEU Scores on WMT English-German
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* original reported numbers; differences in 
BLEU from the Reversible Transformer are 
likely due to hyperparameter tuning
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Time
Complexity



Time Complexity: Feed Forward

P 22L = 1 million tokens

input

output

Linear: O(L)

ReLU

intermediate 
activations



Time Complexity: Attention

P 23L = 1 million tokens
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Attention is Sparse

P 24L = 1 million tokens
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Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)
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LSH Attention
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LSH Attention
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LSH Attention
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LSH Attention
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LSH Attention
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LSH Attention
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LSH Attention
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LSH Attention: Model Quality
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LSH Attention: Speed
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Sparsity



Standard Feed-Forward Layer
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Sparse Feed-Forward Layer
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Keep only one 
row/column
from each block.



Sparse Feed-Forward Layer Controller

activation vector

mat
mul

d_model

lo
w

_r
an

k

d_ff

mat
mul

low_rank

d_
m

od
el

0 0 1 0 0 0 0 1

Straight-Through 
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How to decide which 
columns/rows
should be kept?



Sparsifying Dense QKV Layers in Attention

activation vector

d_model

“Multiplicative” layer: O(d_model1.5) weights.
It is designed to represent any permutation!

Split into n_heads.

ConvLayer.

This layer has less 
parameters than Dense.
To keep total number
of model parameters,
we always increase d_ff 
accordingly.

Outputs (for each head)



Embedding

Decoder TokensEncoder Tokens

Encoder

5.5x
faster!

28x
faster!

● Perplexity on par with dense model same size

● 5x+ decoding speedup on medium-sized model

● 28x+ decoding speedup on big model

Scaling Transformer (Terraformer) Results
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Outlook



The future is promising!
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● Efficient Transformers for all lengths

● Decoding fast enough even on CPUs

● Fine-tuning possible for everyone


