
Nikita Kitaev, Łukasz Kaiser and Anselm Levskaya, Sebastian Jaszczur, Aakanksha Chowdhery, 
Afroz Mohiuddin, Wojciech Gajewski, Henryk Michalewski, Jonni Kanerva

Efficient Transformers



Long long time go: RNNs Everywhere

But: how about speed? Gradients in long sequences?



The Transformer



Machine Translation Results: WMT-14

29.1 41.8



How about other NLP tasks?

BERT = Bidirectional Encoder Representations from Transformers

GLUE is a set of NLP tasks, we measure average score (higher is better)

● CBOW (bag of words) 58.6
● BiLSTM + Attention 65.6
● BiLSTM + ELMo + Attention 70.0
● BERT 80.5
● Human Baselines 87.1
● ALBERT 89.4



Transformer

P 6

From the BERT documentation:

ZERO!



GPT3

P 7



Outlook

P 8

In the near future, it will be impossible to even fine-tune state of the art 
models without datacenter-scale hardware resources.



Outlook

P 9

In the near future, it will be impossible to even fine-tune state of the art 
models without datacenter-scale hardware resources.

Transformers can be adapted to run on today’s hardware over entire chapters 
or documents of text -- up to 1 million tokens at a time.

Moreover, the model should run on a single GPU or TPU device.



Efficiency Challenges

P 10

● Memory Efficiency
○ Reduce memory usage with reversible residual layers, as in 

RevNet [Gomez+ 17] 
○ Efficiently train with memory swapping to CPU and quantization

● Time Complexity
○ Introduce fast attention with locality sensitive hashing (LSH)

● Need to activate all weights for each token
○ Sparse layers that allow selective activations



P 11

Memory
Efficiency



Memory Efficiency

P 12

input

L = 1 million tokens



Memory Efficiency

P 13

dmodel = 512

L = 1 million tokens

input



Memory Efficiency

P 14

dmodel = 512

L = 1 million tokens

~ 2 GBinput



Memory Efficiency

P 15L = 1 million tokens

~ 2 GB

~ 2 GB

~ 2 GB

~ 2 GB

Attention

Feed Forward

Feed Forward...
input

output



Memory Efficiency

P 16L = 1 million tokens

~ 2 GB

~ 2 GB

~ 2 GB

~ 2 GB

Attention

Feed Forward

Feed Forward...
input

output

12x Attention
12x Feed-Forward



Memory Efficiency

P 17L = 1 million tokens

~ 2 GB

~ 2 GB

~ 2 GB

~ 2 GB

Attention

Feed Forward

Feed Forward...
input

output

12x Attention
12x Feed-Forward

50 GB total



Memory Efficiency: RevNets

P 18

Layer 2

Layer 1

Layer 2

Layer 1

+

+

-

-



Memory Efficiency

P 19L = 1 million tokens

~ 4 GB

~ 4 GB

~ 4 GB

~ 4 GB

Attention

Feed Forward

Feed Forward...
input

output

No caching needed when 
using reversible layers



Reversible Transformer: BLEU Scores on WMT English-German

P 20

* original reported numbers; differences in 
BLEU from the Reversible Transformer are 
likely due to hyperparameter tuning



P 21

Time
Complexity



Time Complexity: Feed Forward

P 22L = 1 million tokens

input

output

Linear: O(L)

ReLU

intermediate 
activations



Time Complexity: Attention

P 23L = 1 million tokens

input

output

softmax

Q

KQKT V
L2 dot product 

operations



Attention is Sparse

P 24L = 1 million tokens

input

output

softmax

Q

K V



Locality Sensitive Hashing (LSH)

P 25



Locality Sensitive Hashing (LSH)

P 26



Locality Sensitive Hashing (LSH)

P 27



Locality Sensitive Hashing (LSH)

P 28



Locality Sensitive Hashing (LSH)

P 29



Locality Sensitive Hashing (LSH)

P 30



LSH Attention

P 31



LSH Attention

P 32



LSH Attention

P 33



LSH Attention

P 34



LSH Attention

P 35



LSH Attention

P 36



LSH Attention

P 37



LSH Attention: Model Quality

P 38



LSH Attention: Speed

P 39



P 40

Sparsity



Standard Feed-Forward Layer

activation vector

mat
mul

mat
mul

ReLU

feed-forward output

d_model

d_
m

od
el

d_ff

d_
ff

d_model

FNN(x) =
ReLU(xW

1
 + b

1
)W

2
 + b

2



Sparse Feed-Forward Layer

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

activation vector

mat
mul

mat
mul

ReLU

feed-forward output

d_model

d_
m

od
el

d_ff

d_
ff

d_model

Keep only one 
row/column
from each block.



Sparse Feed-Forward Layer Controller

activation vector

mat
mul

d_model

lo
w

_r
an

k

d_ff

mat
mul

low_rank

d_
m

od
el

0 0 1 0 0 0 0 1

Straight-Through 
Gumbel-Softmax (per block)

How to decide which 
columns/rows
should be kept?



Sparsifying Dense QKV Layers in Attention

activation vector

d_model

“Multiplicative” layer: O(d_model1.5) weights.
It is designed to represent any permutation!

Split into n_heads.

ConvLayer.

This layer has less 
parameters than Dense.
To keep total number
of model parameters,
we always increase d_ff 
accordingly.

Outputs (for each head)



Embedding

Decoder TokensEncoder Tokens

Encoder

5.5x
faster!

28x
faster!

● Perplexity on par with dense model same size

● 5x+ decoding speedup on medium-sized model

● 28x+ decoding speedup on big model

Scaling Transformer (Terraformer) Results



P 46

Outlook



The future is promising!

P 47

● Efficient Transformers for all lengths

● Decoding fast enough even on CPUs

● Fine-tuning possible for everyone


