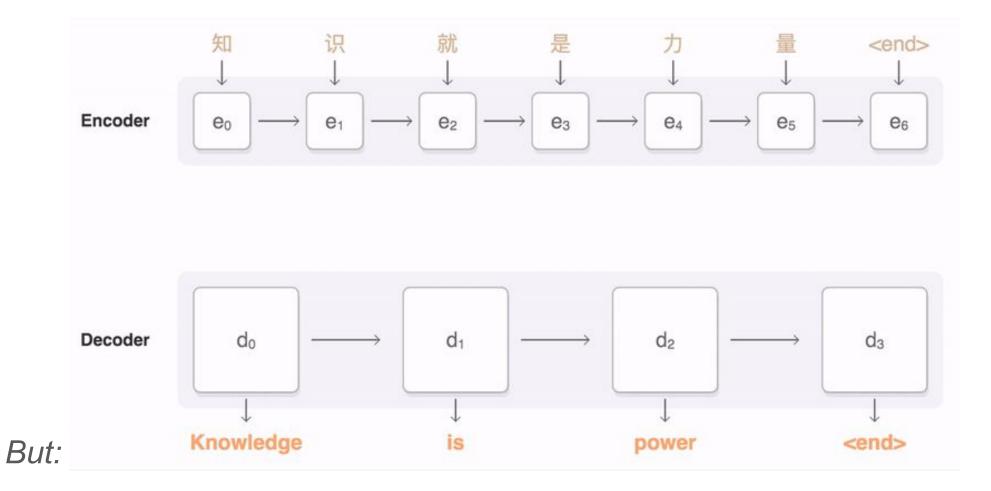


Nikita Kitaev, <u>Łukasz Kaiser</u> and Anselm Levskaya, Sebastian Jaszczur, Aakanksha Chowdbery, Afroz Mohiuddin, Wojciech Gajewski, Henryk Michalewiski, Jonni Kanerva

Efficient Transformers

Long long time go: RNNs Everywhere



The Transformer

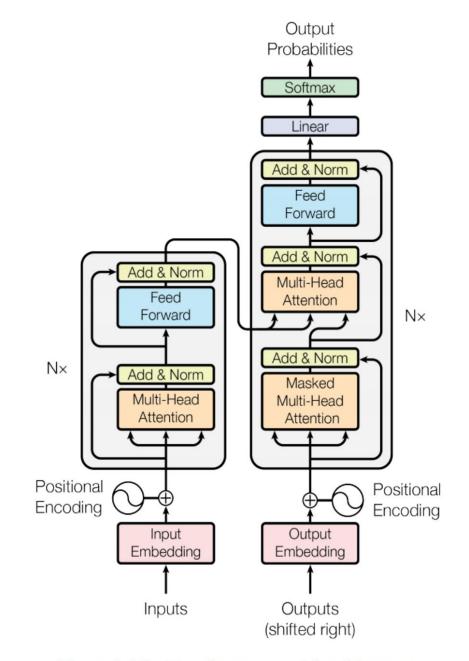


Figure 1: The Transformer - model architecture.

Machine Translation Results: WMT-14

Madal	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [17]	23.75			
Deep-Att + PosUnk [37]		39.2		$1.0\cdot 10^{20}$
GNMT + RL [36]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [31]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0\cdot10^{20}$
GNMT + RL Ensemble [36]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$
Transformer (base model)	27.3	38.1		10 ¹⁸
Transformer (big)	28.429	1 41.041.8	$2.3 \cdot$	10 ¹⁹

How about other NLP tasks?

BERT = Bidirectional Encoder Representations from Transformers

GLUE is a set of NLP tasks, we measure average score (higher is better)

 CBOW (bag of words) 	58.6
 BiLSTM + Attention 	65.6
 BiLSTM + ELMo + Attention 	70.0
• BERT	80.5
 Human Baselines 	87.1
• ALBERT	89.4

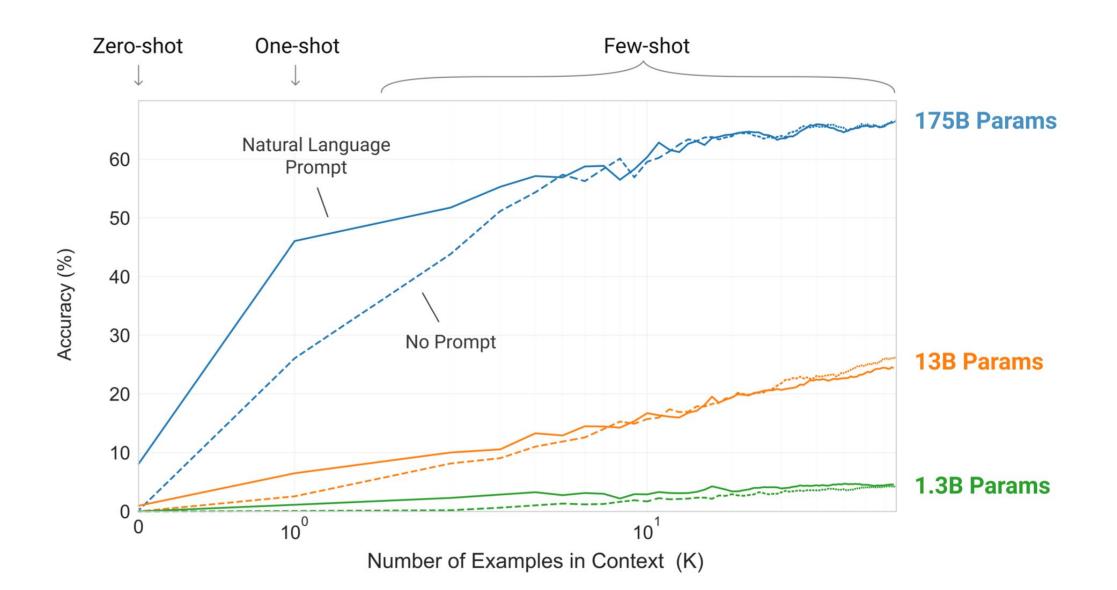
Transformer

From the BERT documentation:

Using the default training scripts (run_classifier.py and run_squad.py), we benchmarked the maximum batch size on single Titan X GPU (12GB RAM) with TensorFlow 1.11.0:

System	Seq Length	Max Batch Size
BERT-Large	64	12
	128	6
	256	2
	320	1
	384	0
	512	0

GPT3



Outlook

In the near future, it will be impossible to even fine-tune state of the art models without datacenter-scale hardware resources.

Outlook

In the near future, it will be impossible to even fine tune state of the art models without datacenter scale hardware resources.

Transformers can be adapted to run on today's hardware over entire chapters or documents of text -- up to 1 million tokens at a time.

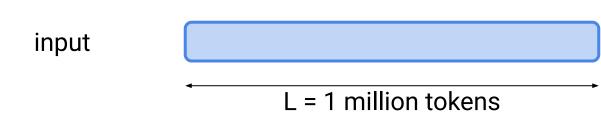
Moreover, the model should run on a single GPU or TPU device.

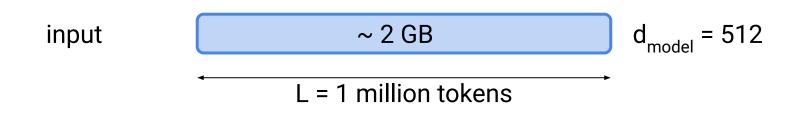
Efficiency Challenges

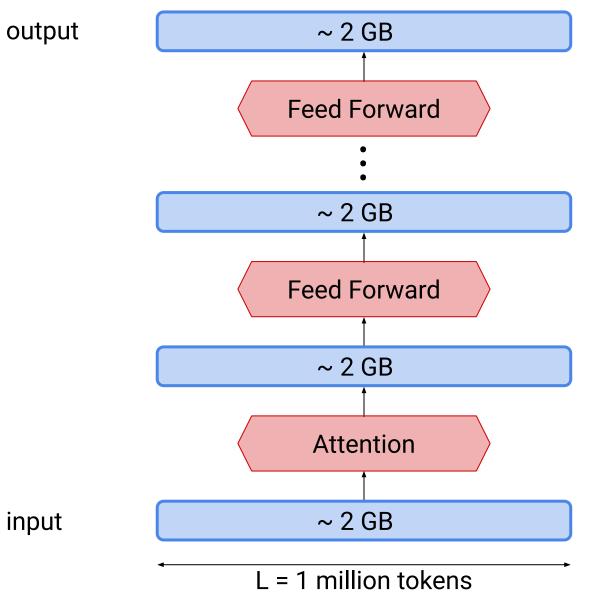
- Memory Efficiency
 - Reduce memory usage with reversible residual layers, as in RevNet [Gomez+ 17]
 - Efficiently train with memory swapping to CPU and quantization

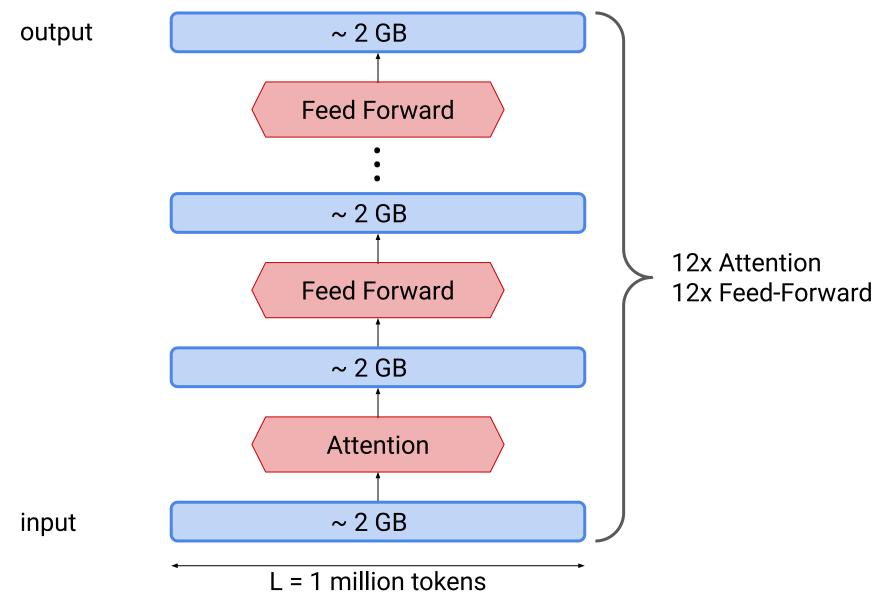
- Time Complexity
 - Introduce fast attention with locality sensitive hashing (LSH)

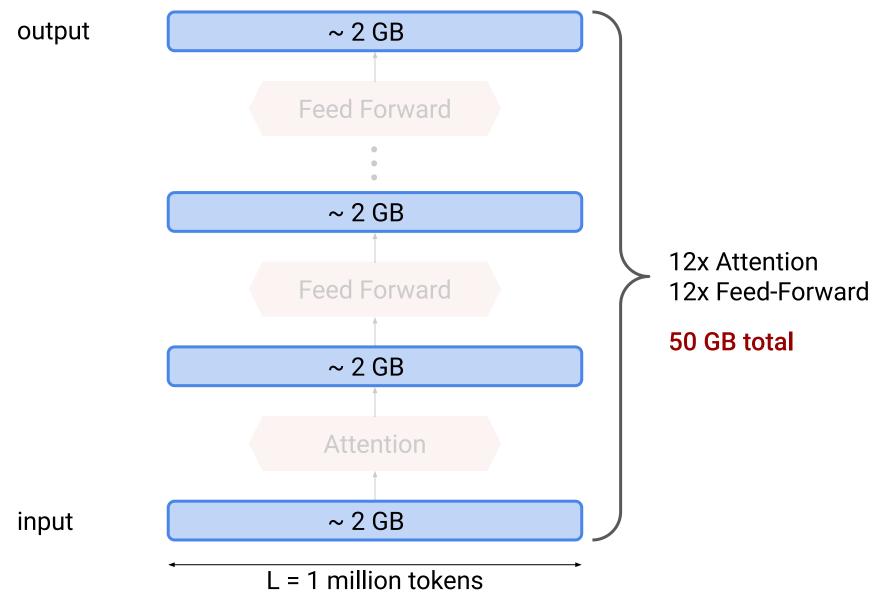
- Need to activate all weights for each token
 - Sparse layers that allow selective activations



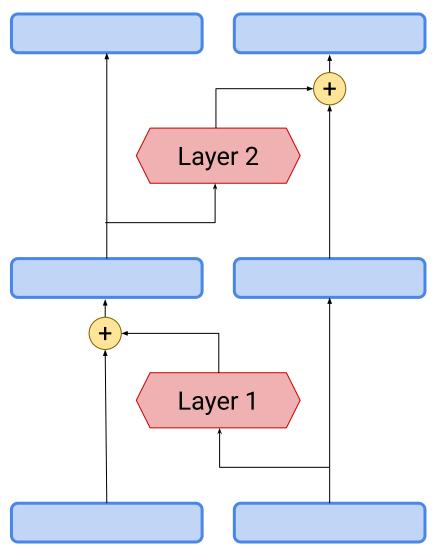


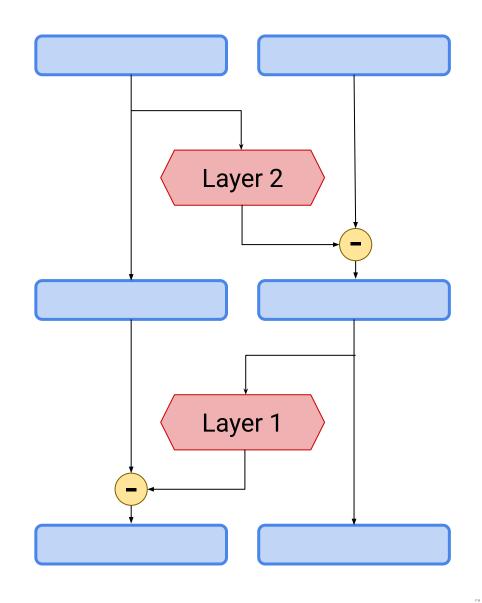


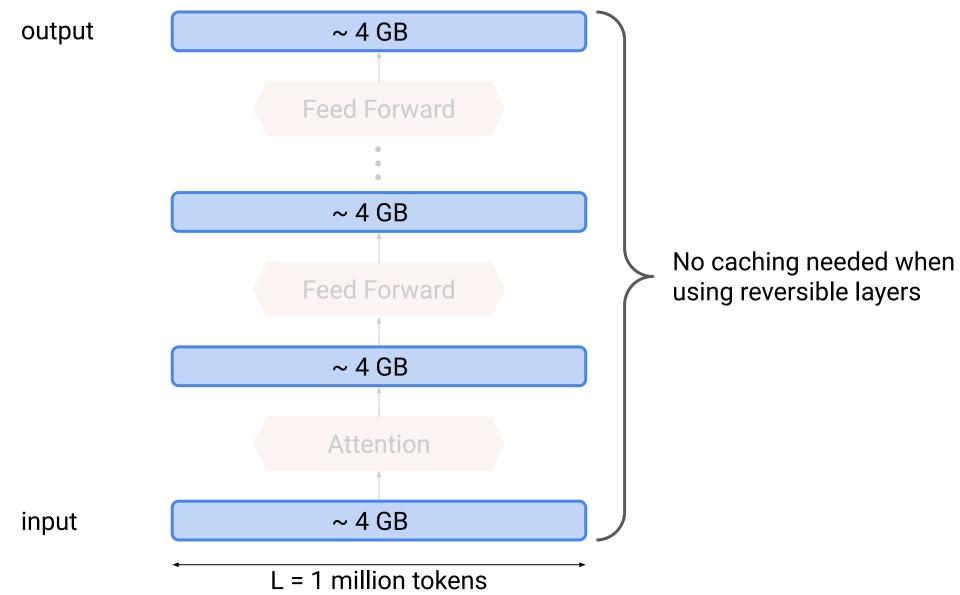




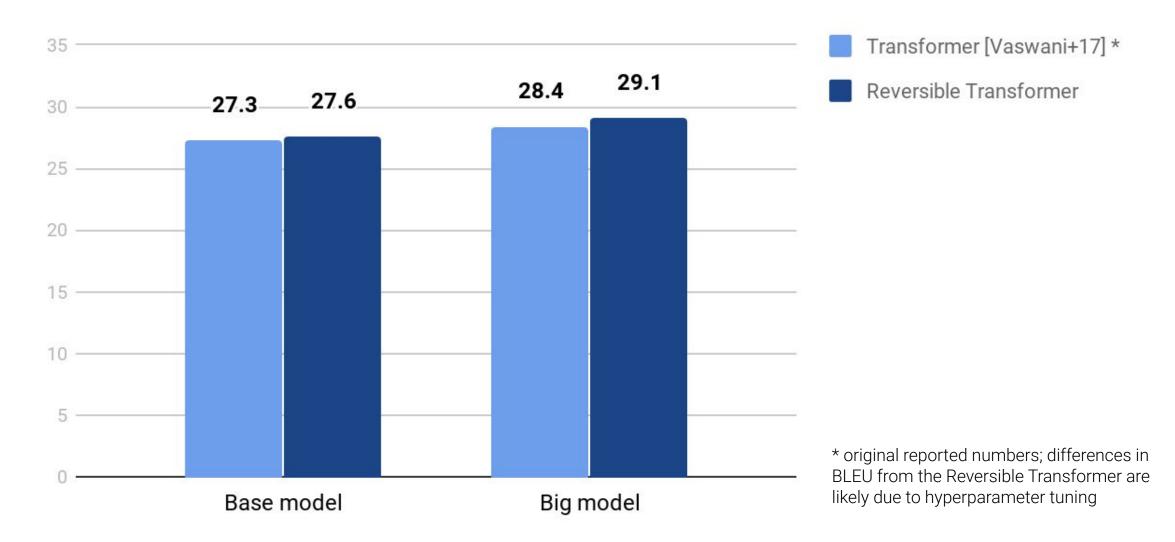
Memory Efficiency: RevNets





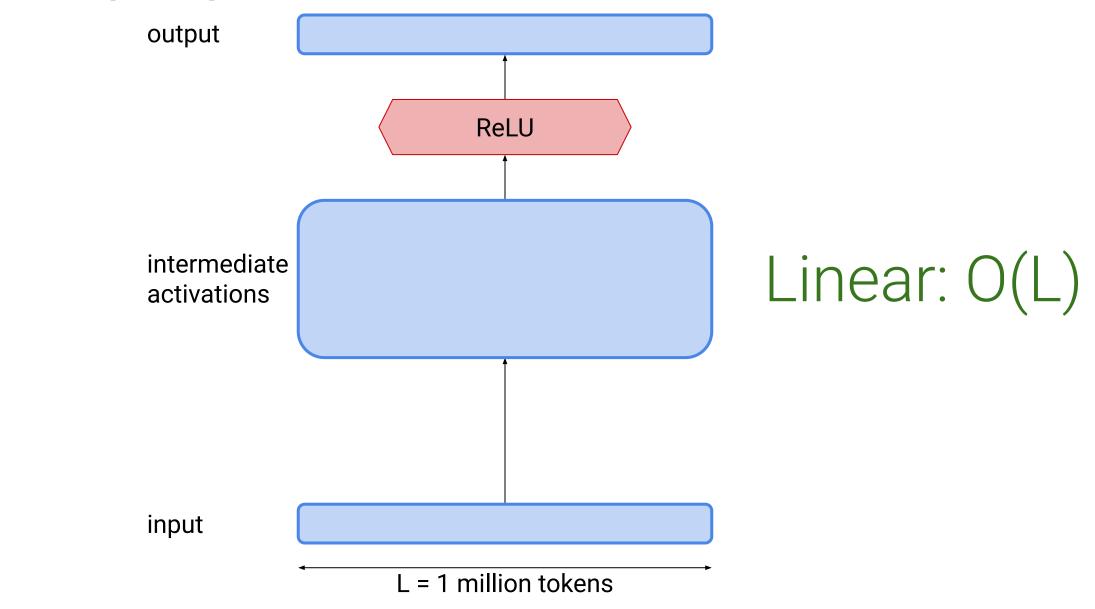


Reversible Transformer: BLEU Scores on WMT English-German

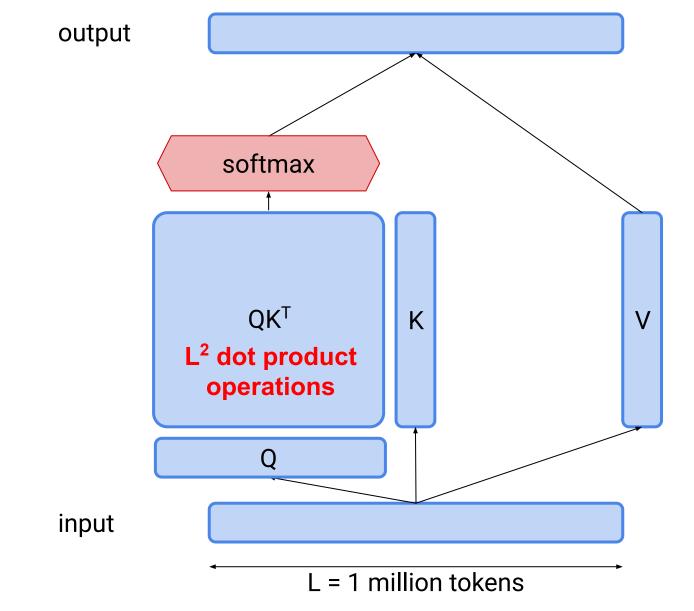


Time Complexity

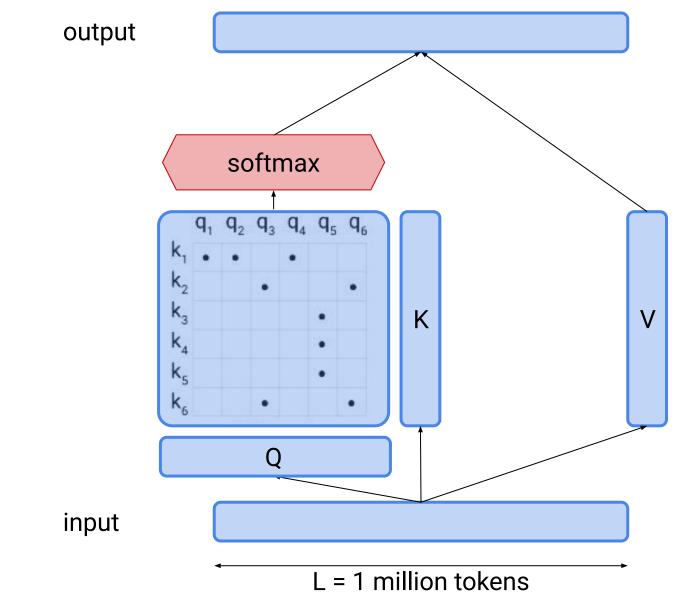
Time Complexity: Feed Forward

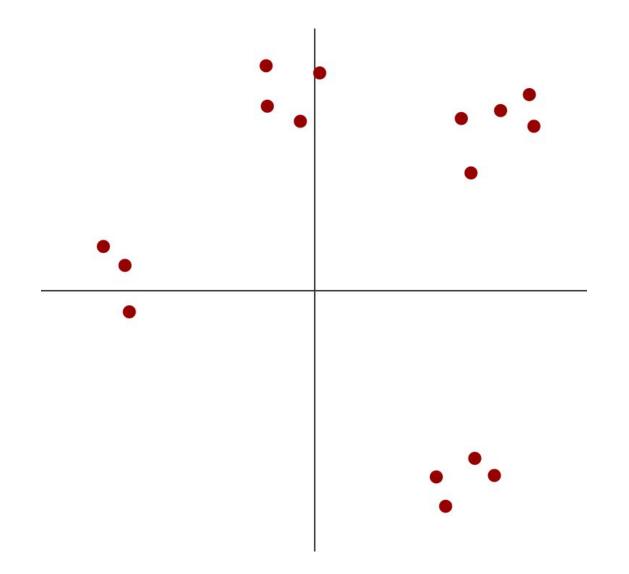


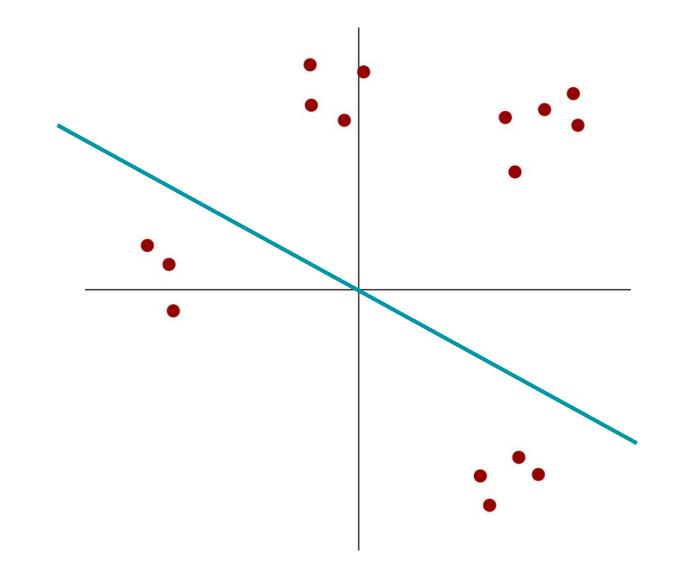
Time Complexity: Attention

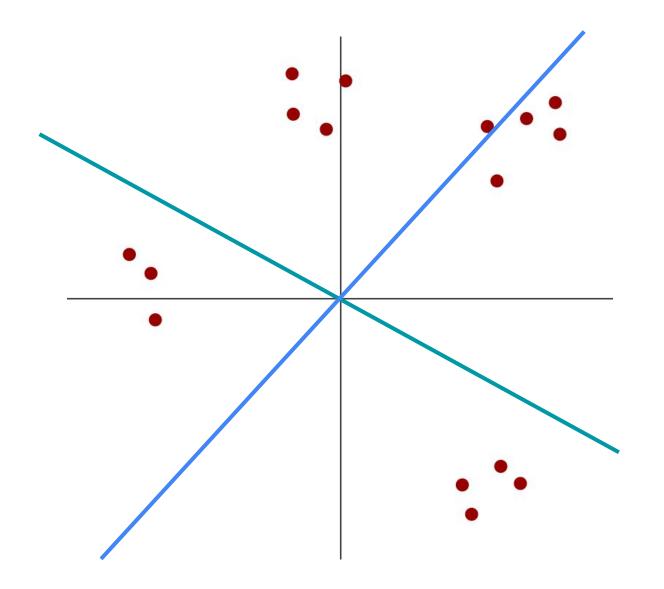


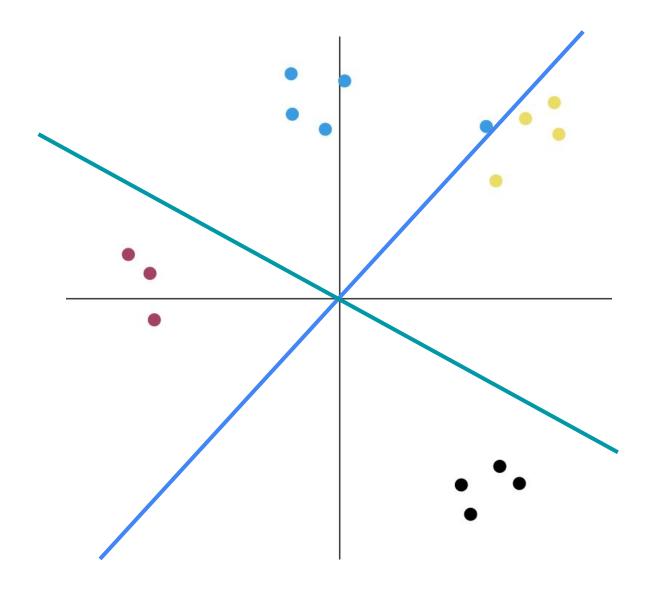
Attention is Sparse

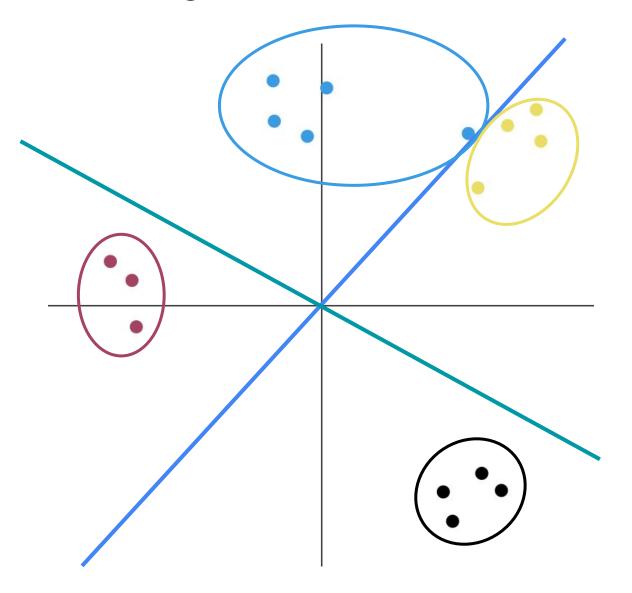


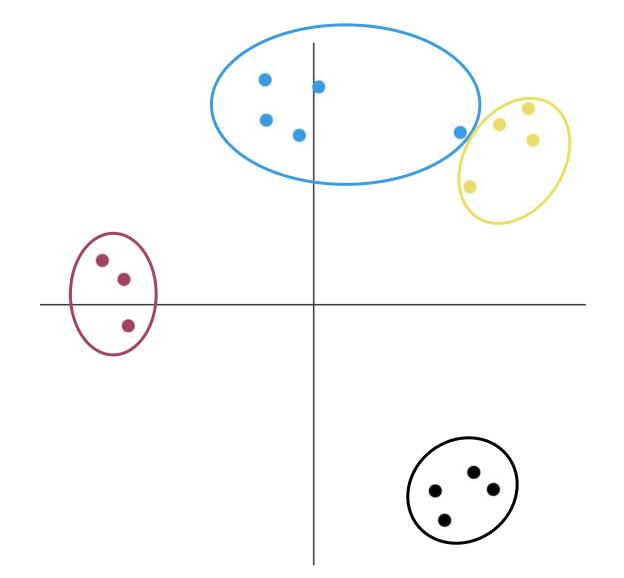


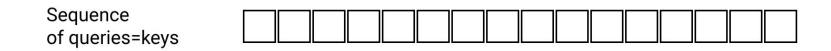


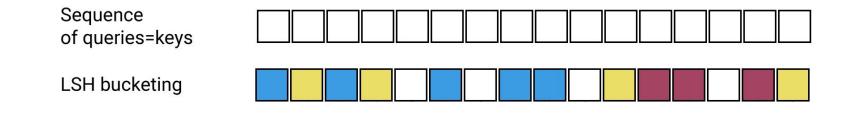


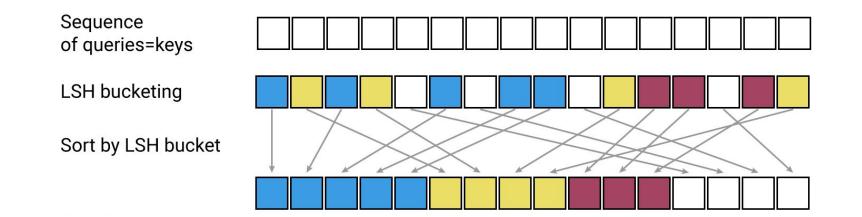




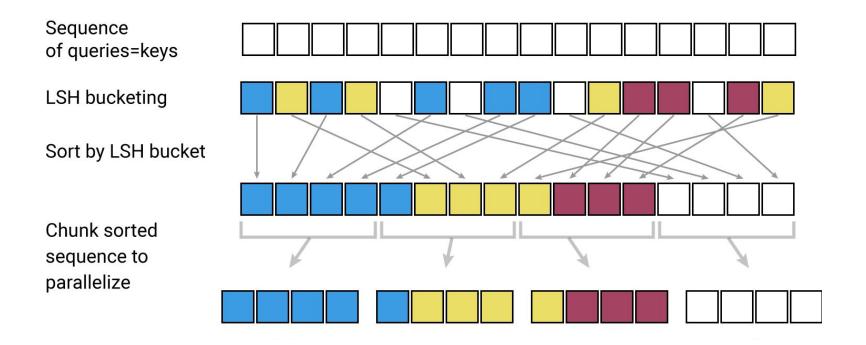




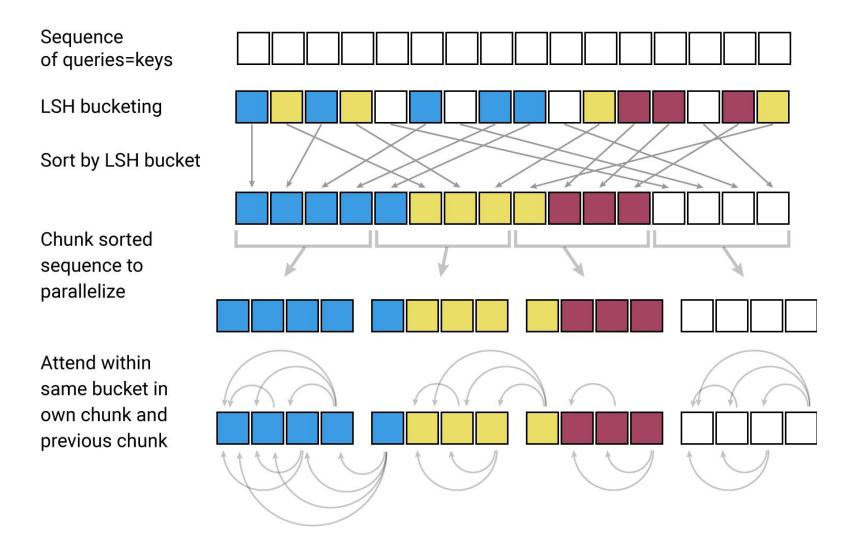


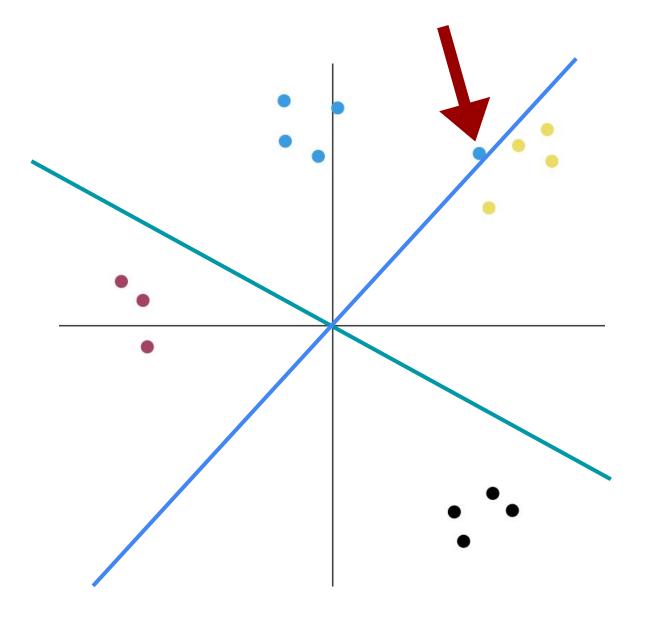


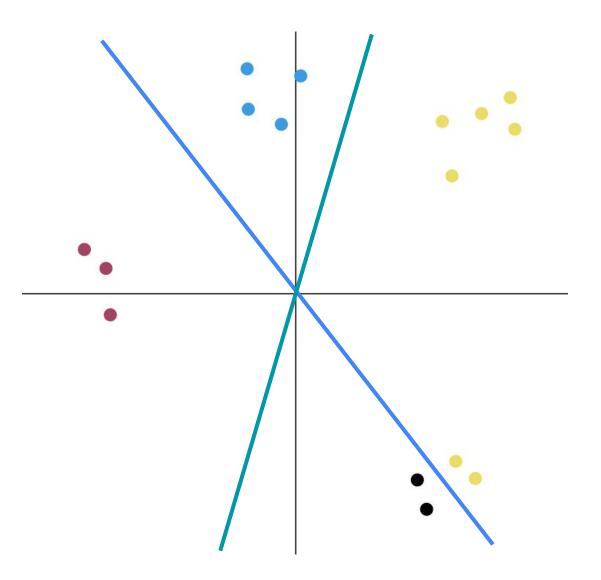
P 34



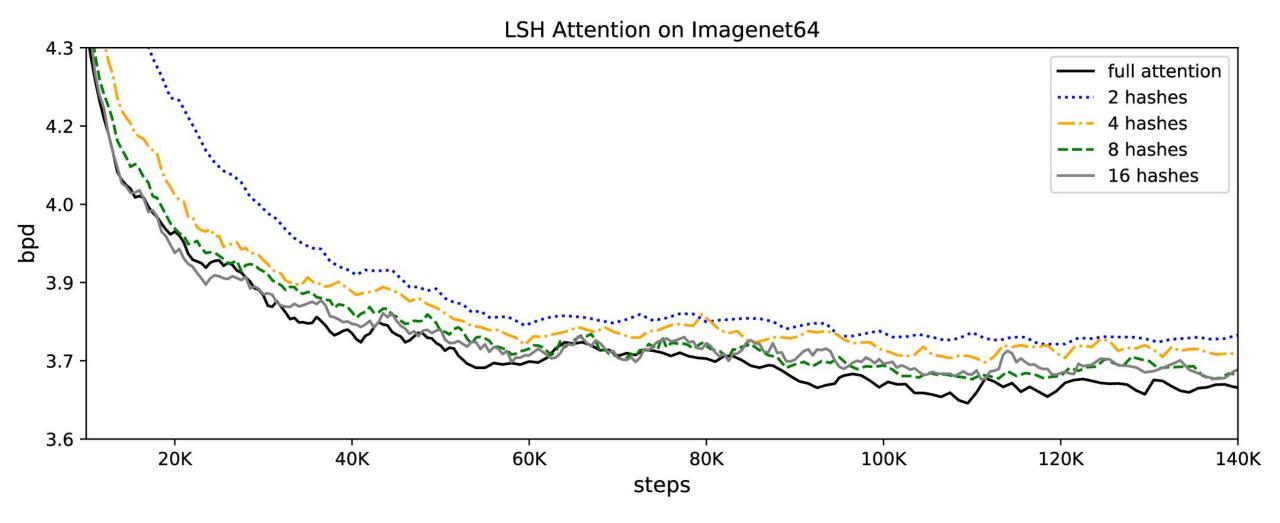
P 35



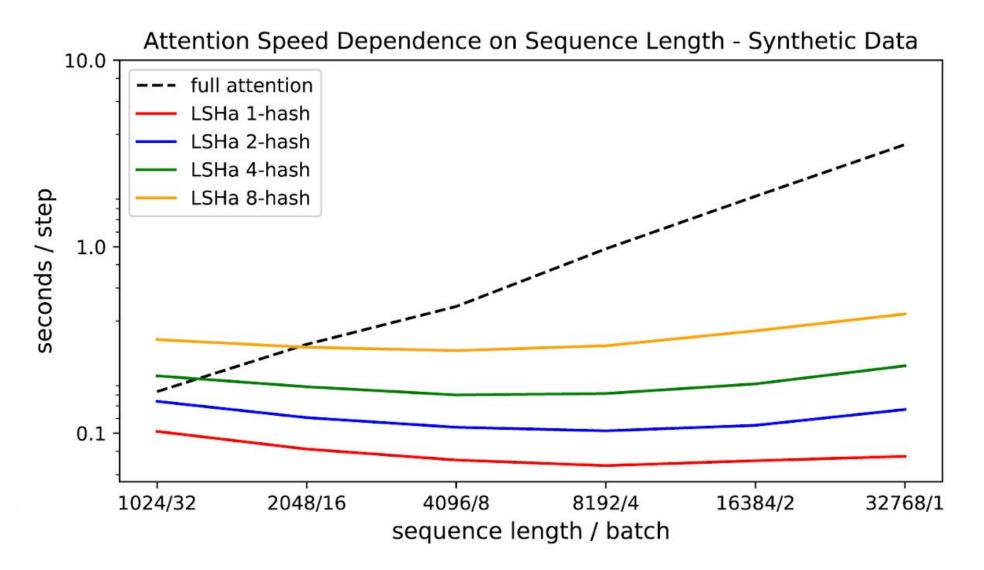




LSH Attention: Model Quality

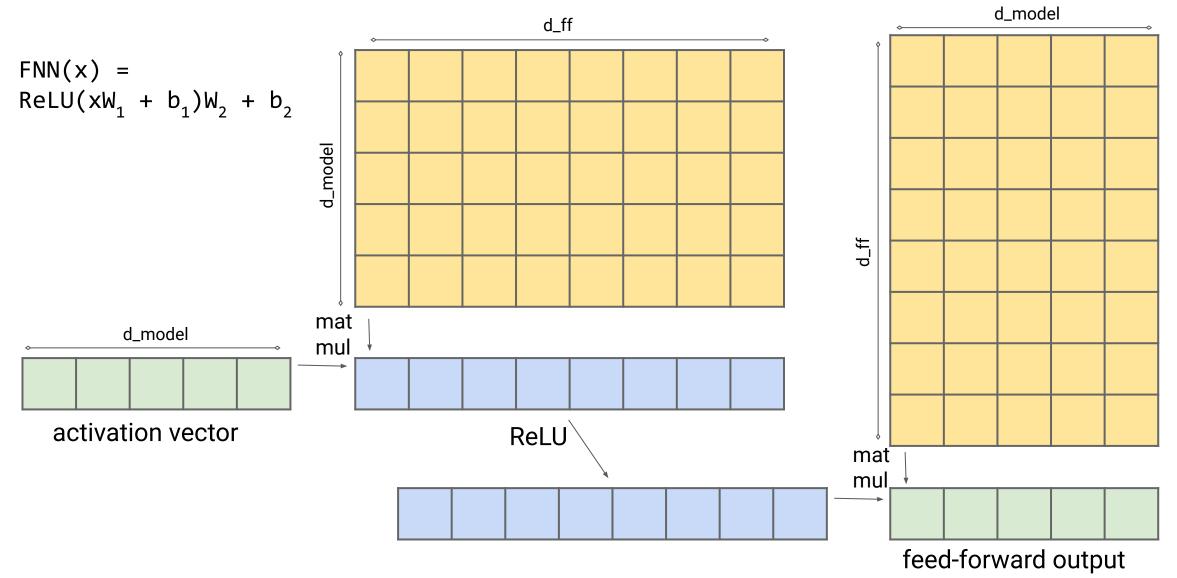


LSH Attention: Speed

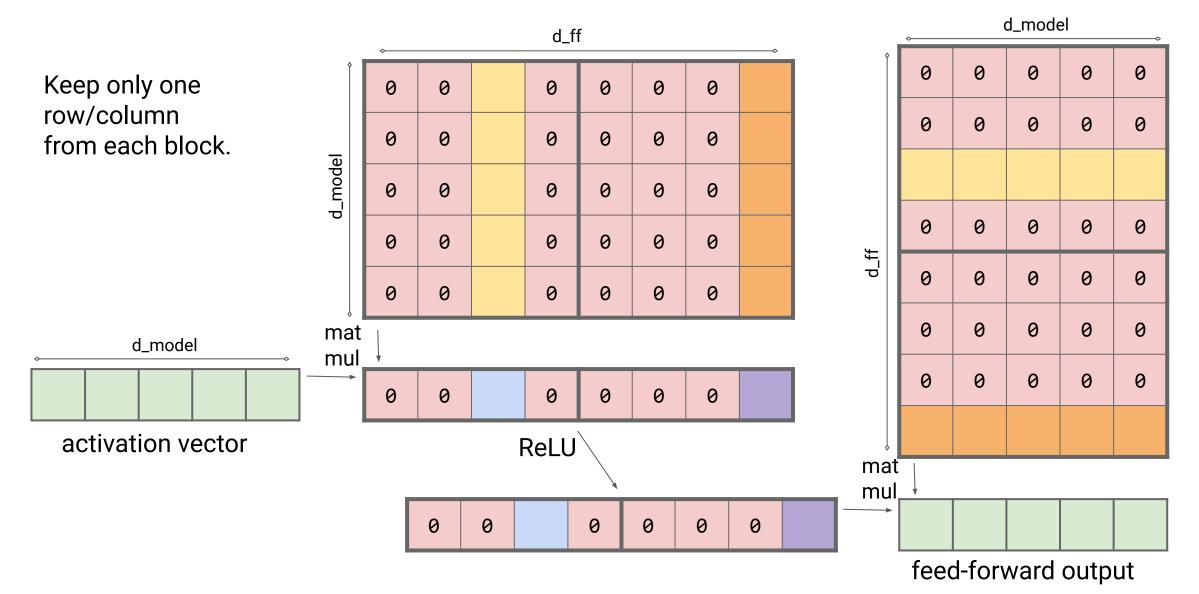


Sparsity

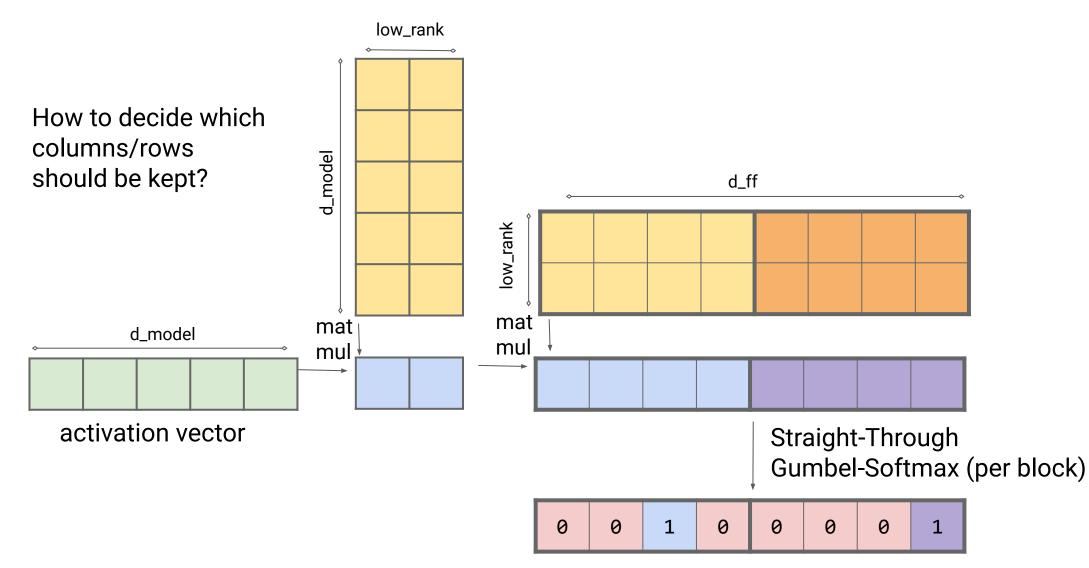
Standard Feed-Forward Layer



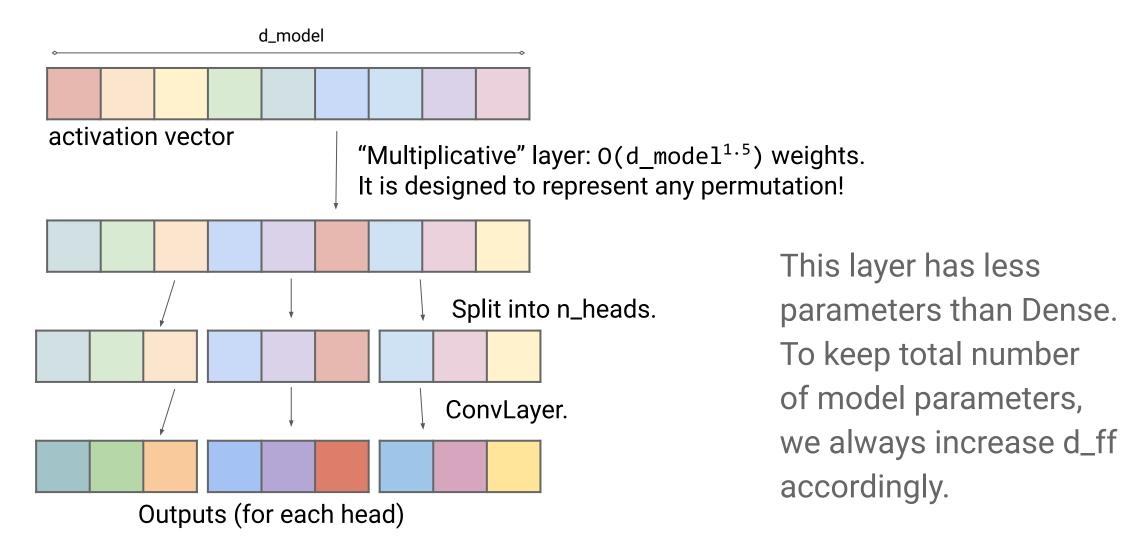
Sparse Feed-Forward Layer



Sparse Feed-Forward Layer Controller

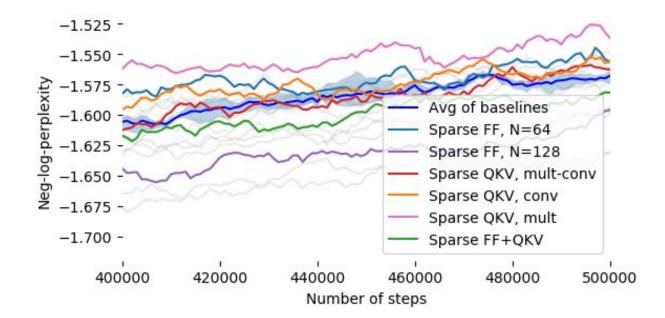


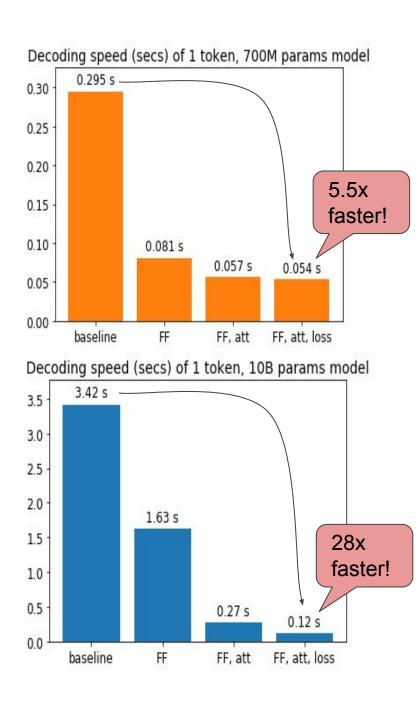
Sparsifying Dense QKV Layers in Attention



Scaling Transformer (Terraformer) Results

- Perplexity on par with dense model same size
- 5x+ decoding speedup on medium-sized model
- 28x+ decoding speedup on big model





P.46

Outlook

The future is promising!

- Efficient Transformers for all lengths
- Decoding fast enough even on CPUs
- Fine-tuning possible for everyone